Heat Pumps


Heat pumps are growing in popularity and are a crucial technology in the move toward electrification.

Advanced Training: If you need to get in depth training on how to market, sell, design or install heat pumps.

How Massachusett’s Alternative Energy Credit Prices Will Impact Heat Pump and Biomass Operating Costs

We passed the Massachusetts “Clean Heat Bill” in July 2014. The final bill number is S. 2214. 

The bill created a production-based incentive, similar to solar PV renewable energy credits (SRECs), for renewable thermal technologies including solar thermal, air source heat pumps, ground source heat pumps, solid biomass, and biogas.

In this article, I’ll explain how Alternative Energy […]

October 21st, 2014|Categories: Biomass, Heat Pumps, Solar, Uncategorized||

State-by-State Comparison of Geothermal Heat Pump Legislation

I want to thank John Rhyner, Greg Mueller and LI Geo for putting together this report. If you’re new to legislation around renewable thermal technologies this article will provide you a great overview and direction for where you can get more information. Here are a few other articles to read to get up to date:

In Depth NH Renewable Thermal Policy Update
Massachusetts Geothermal Policy Review
Trendspotting: US State Heating up to Renewable Energy Heating and Cooling Part 1
Trendspotting: US State Heating up to Renewable Energy Heating and Cooling Part 2
If you have a question about geothermal heat pump policy, ask as HeatSpring expert here. 

Enter John and Greg
The Long Island Geothermal Energy Organization (LI-GEO) is a newly-formed organization with the primary purpose of promoting and increasing the use of energy-efficient geothermal heat pump technology for building heating and cooling on Long Island, New York.  A core organizational priority of LI-GEO is to guide future legislative and advocacy efforts at the local and state level.  To that end, this document was prepared to establish the current status of geothermal heat pump (GHP) legislation in other states as well as at the federal level.
 INTRODUCTION

Most states have established a Renewable Portfolio Standard (RPS), which is a legislative requirement for utilities operating in the state to obtain a certain amount of the electricity they sell from eligible renewable sources.  For example, utilities in a participating state are required to obtain some percentage of their electricity from renewable energy sources in Year 1 with that percentage increasing annually until reaching some maximum percentage after a period of time.  The states are generally assigning one Renewable Energy Credit or Certificate (REC) for every 1,000 kWhs (1 MWh) of electric production from an eligible source.

Until recently, only traditional renewable technologies including solar PV, wind, “hot rock” geothermal, etc. were deemed eligible technologies under the states’ RPS programs.  GHPs were not considered to be an eligible technology since they do not produce electricity which can be metered.  There is an ongoing debate, often heated, over whether or not a GHP system can be considered a “renewable energy” system.  Some classify GHP technology solely as an energy efficiency measure since it requires electrical energy input.  The industry’s general position is that the technology leverages renewable solar-derived heat stored in the ground and converts it into a useable form, namely building heating, and thus has the same net as other renewable energy systems such as solar thermal.  Further, for cooling, heat is removed from a building and rejected back into the ground where it is stored and can be accessed again during the upcoming heating season.  The technology also offers significant demand reduction potential, particularly relative to electric resistive heating and other conventional cooling systems.

Circumventing the renewable debate, a growing number of states are recognizing the overall societal benefits of GHPs and have begun allowing utilities to meet their RPS requirements by awarding “Thermal RECs” for GHP systems.  A Thermal REC is the equivalent thermal energy associated with one MWh of electrical energy, or 3,412,000 BTUs of thermal energy.  Much of this trend has been the result of efforts by a strong advocacy movement led in part by national and regional-based geothermal advocacy groups including The Geothermal Exchange Organization (GEO), National Ground Water Association (Geothermal Heat Pump Interest Group), New England Geothermal Professionals Association (NEGPA), and others.  As a result, there is growing momentum amongst the states towards incentivizing the use of GHP systems to meet rising RPS mandates.

STATE LEGISLATION AND INITIATIVES

At the forefront of state GHP legislation are recently-enacted laws in Maryland and New Hampshire, which now allow utilities in these states to meet RPS requirements using Thermal RECs generated by GHP systems.  The Maryland and New Hampshire programs now categorize GHPs as “renewable” and include them in the same incentive category as solar PV, wind, etc.  Details on each bill are presented below along with summaries of some other states that have or are considering provisions for Thermal RECs or for provisions which would otherwise allow GHPs to contribute toward satisfying RPS requirements.

Maryland:  S.B. 652, H.B. 1186 – Enacted 5/22/12

In May of 2012 Maryland passed legislation allowing geothermal heating and cooling systems commissioned on or after January 1, 2013, that meet certain standards to qualify as a Tier I “Renewable Source” for the purposes of the state’s RPS mandate.  According to the legislation the owner of the geothermal system will receive RECs based on the number of annual Btu’s of thermal energy supplied by the system and converted into MWhs.  One REC will be awarded for each MWh produced.  Systems must be designed and installed in accordance with local regulations.  The Maryland legislation includes GHPs in the same Tier I Renewable Source designation as solar, wind, biomass and other traditional renewable technologies. 

New Hampshire:  S.B. 218 – Enacted 6/22/12

In June of 2012, New Hampshire enacted a law that classifies geothermal thermal energy, including thermal energy produced using a GHP system, as a “Class I – New Renewable Energy.”  This class previously included electricity produced by wind, methane, landfill and biomass gas, wave/ocean power and others but was extended by the bill to include thermal energy from GHP and solar thermal systems.  The bill defines “Useful Thermal Energy” as “renewable energy delivered from Class I sources that can be metered and for which fuel or electricity would otherwise be consumed.”  As in Maryland, one REC is credited for each MWhr of Useful Thermal Energy produced by the system.  The New Hampshire legislation requires that “a qualified producer of useful thermal energy shall provide for the metering of useful thermal energy produced in order to calculate the quantity of megawatt-hours for which renewable energy certificates are qualified, and to report to the public utilities commission…Monitoring, reporting, and calculating the useful thermal energy produced in each quarter shall be expressed in megawatt-hours, where each 3,412,000 BTUs of useful thermal energy is equivalent to one megawatt-hour.”  The bill sets a REC price of $55 for Class I sources.

Other State Initiatives Recognizing Thermal Energy/RECs 

Wisconsin – In May 2010, the Wisconsin RPS was amended to allow specified non-electric resources that produce a measurable and verifiable displacement of conventional electricity resources to also qualify as eligible resources for obtaining Renewable Resource Credits (RRCs, Wisconsin’s version of RECs).  GHPs, biomass, solar water heating and solar light pipes are listed as eligible technologies.  This means that, like New Hampshire and Maryland, non-electric thermal energy from a GHP system may contribute toward the RPS, but the RRCs awarded are calculated based on the amount of conventional electricity displaced (electricity from non-renewable resources) rather than the actual thermal energy produced.

[…]

October 12th, 2012|Categories: Clean Energy Policy, Geothermal Heat Pumps, Heat Pumps, Solar Thermal, Utility-Scale Solar||

Sizing Heat Pumps to Maximize Geothermal Economics in the Design Process [Video Tutorial]

Yes, that’s my picture from my first video tutorial. Last week, I wrote a article on the 4 basic steps to deseigning a geothermal heat pump system for a residential home. To refresh your memory, those steps are 1) perform heat gain/loss calculations 2) size the heat pump 3) size the loop field 4) size the ground loop. To read more, click no the above link to get the full walk through.

I mentioned at the end that there were a few advanced design topics I did not cover. One was the trade off in heating dominate climates between a small unit that is undersized for heating and thus sometimes needs to use (very exepsnvie) electric heat versus a larger unit that can produce plenty of heat, but requires a larger (very expensive) loop field to function correctly. To address these questions, I’ve created a video tutorial using a sample project to walkthrough the comparison. Read past the break for full details and join HeatSpring on facebook to keep the most up to date on free courses, events, tips, resources and news. If you’re a clean energy professional and looking to connect with other geothermal professionals to collaborate on jobs or best practices, request to join HeatSpring’s linkedin group for Clean Energy Professionals

[…]

The Third Most Common Mistake Made Designing Geothermal Heat Pump Systems

This is the last part in a three part serious about the three most common errors that geothermal designers make when designing ground source heat pumps system. If you’ve been following, the main concern for a very simple reason, the geothermal industry is small but quickly growing so it’ll be best to minimize any black eyes from poor system design.

In my last two posts, I’ve outlined the first two big mistake made by designers.

Underestimating the importance of accurate peak heating and cooling load calculations
Not Giving Proper Consideration to Alternatives posted on Heating Help.com

The third mistake is simple, don’t overcomplicate the design.

[…]

April 11th, 2011|Categories: Building Science, Heat Pumps|Tags: , , , , |