Skip to content

Battery Backup Basics for Solar PV

Christopher LaForge Christopher LaForge

When choosing the right battery, we must consider what we are doing with them, where we will put them, how much we will work on them, and how long we want them to last.

Of course, all of these factors will be affected by budget. Batteries are like (oh no, here comes the fine wine analogy!) anything you pay for: more money spent often means higher quality. If we’re going to use batteries we should understand how they are built and what they can (and can not) do for us. We will want to know an amp-hour from a specific gravity and how the two relate. Buying a battery is a long term investment.
Similar to designing any renewable energy (RE) system, I begin by assessing the owners’ goals. What are we trying to accomplish? If we are building a battery to live “off-the-grid” we will need a large unit and we will want to use large batteries. If we simply want to back up a few lights and some communications for a few hours during a storm-induced outage, we can use fairly small batteries.

Background on Batteries in Solar PV Systems

Typical RE system batteries are Flooded Lead Acid (FLA) batteries which are all made up of 2-volt cells. Cells are combined in series to build individual batteries (i.e. Golf Cart Battery (GC) =3-2VDC cells in one 6VDC unit typically storing 220 Ampere hours (Ahrs.). Individual GC batteries are combined in series and parallel to create the correct size for the battery “bank” (i.e.: 4 GC’s in series to create a 24 VDC series string, and 2 strings of 4 GC’s in parallel to create a 440 Ahr 24VDC battery “bank). The Bank should be sized to provide the energy storage for the work you want to do (average daily watt/hour consumption) for the time needed (hours for grid-backup, ‘days of autonomy’ for off-grid)

Making up the right battery bank for your needs will require this basic design pattern and a few additional tricks. Batteries live and die by how well we “cycle” them. Discharging a battery 80% and then charging it back to full with a large industrial battery charger is a typical “cycle” for deep cycle batteries. In RE systems we cycle lightly, often living in the top 25% of the batteries capacity. The depth to which we discharge and the number of times we cycle them will determine how long our battery bank lives. We want our system to recharge our bank to full on a daily basis (within reason) and we generally don’t want to cycle RE system batteries below 50% depth of discharge before they get filled back up. Discharging a battery deeply and leaving it discharged for extended periods is what kills battery life quickly.

We can talk about battery types (not considering exotics such as Lithium Ion, liquid pocket plate NiCad’s, Nickel Iron, and Nickel Metal Hydride) in order of increasing cost. It so happens that this is also the inverse of life span. As we pay more per amp hour, we get a shorter lived lead-acid battery.

  • Flooded lead Acid (FLA) batteries are the most commonly used in RE systems, they require the most maintenance, are the least expensive per amp hour, die at a predictable rate, and need to be recycled and replaced regularly.
  • AGM (absorbed glass mat) lead-acid batteries are similar in chemistry to FLA cells and they have “glass mats” placed between the plates (anodes and cathodes) to reduce gassing during charge and discharge cycles. This reduces maintenance – you can not add water to these cells – and increases cost while potentially shortening the life span, by the end of which they need to be recycled and replaced.
  • “Sealed cells” may use a ‘gel’ type electrolyte and be completely sealed. This means no added water and less gassing, less maintenance, a short life, and higher cost after which they need to be recycled and replaced.

See a theme? I highlight recycling and replacement for a reason – how this is done is important. The batteries I use go back to my U.S.-based factory for recycling at a facility that is regulated by our EPA. This costs more than off-shoring recycling to China or Africa, but it means that the batteries plastic case, electrolyte, and lead are all recycled in the cleanest way possible, where we produce so much pollution in the first place.

That said, why do we use shorter-lived, more expensive cells? The reasons vary and often labor is a key factor. More expensive AGM or Gel cells are advertised as being “maintenance free.” While this is an exaggeration, it does sell these types of batteries. Every lead acid battery will require some maintenance – cleaning terminals (at a minimum) will always need to be done. In addition, with flooded lead acid cells we’ll be adding distilled water to the cells on a regular basis dependent of how often we cycle the bank and how deeply we do it. AGM’s don’t get watered and they have to be charged more lightly to avoid using up the finite amount of electrolyte on board. Sealed and Gel cells also don’t get watered and are charged even more lightly to avoid drying out the cell and killing it. Both AGM’s and Gel’s require lower charge rates on equalization charges, and that makes this battery maintenance regime even more challenging.

Battery Voltage

Lead acid batteries, as mentioned previously, are built up from cells with a “nominal” voltage of 2 volts. Battery banks for RE systems are made up of combinations of cells to achieve nominal battery bank voltages of 12, 24, or 48.

  • When designing small systems (loads under 1000 watt hours/day) we still use 12 VDC as a nominal battery bank voltage, if we think that system will not grow over its lifespan. So, a cabin system for a hunting shack that’s used only a few times a year (and will never become a vacation home or permanent residence) will keep costs down by having this low voltage design.
  • When the system has a larger load profile, we move into the larger (and more electrically efficient) battery voltages of 24 and 48. With medium size deep cycle batteries (GC’s and L16’s) the unit is often a 6VDC device made up of 3-2VDC cells.
  • In the medium-to–large systems we will combine the 6vdc units in series (4 for a 24vdc “string”, and 8 for a 48vdc “string”) and then parallel the series “strings” to get greater amp hour capacity at that voltage. To fully charge a bank, we will limit the number of strings in parallel…

…but first we will need to understand how battery capacity is rated.

Battery Capacity – The Ampere Hour

So what is an amp hour in relation to battery capacity? One ampere-hour (Ahr) is a unit of electrical charge and represents the amount of electric charge transferred by a current of one ampere for one hour. The Ahr capacity of a given battery depends on the rate at which it is being discharged and the amount of time it takes to discharge it (usually to 80% state of discharge for industrial deep-cycle use). Large industrial batteries like the fork-truck type are often rated at the “6-hour” rate, indicating a large ampere discharge rate bringing the battery to a terminal voltage (often 20% state of charge) in 6 hours. For RE systems, we usually employ the “20 hour” rate indicating a modest discharge rate that brings the battery to a terminal voltage (again often 20% state of charge) over 20 hours.

Battery Temperature

Batteries are specified with the assumption of operation at 70° Fahrenheit. When we move out of the 60°F to 80°F range, the battery performance changes. At somewhat higher temperatures, batteries may perform better but at extremely high temperatures, (125°F +) batteries can be severely damaged.

Batteries at temperatures below the 60°F range begin to show reduced capacity. Below 32°F batteries will show significantly lower capacity and while the battery has not actually lost the energy it is storing, the cold temperatures restrain the batteries chemical activity resulting in lower capacity. Remember: a discharged batteries electrolyte is no longer highly acidic and, being more like water, it can easily freeze. Freezing a battery can destroy the cells.

Battery Specifications

When we charge batteries, we want to put as much current as we have into the battery efficiently. Internal temperature increases during high charge rates can mean that batteries gas wildly. To keep from harming the battery in this process, the charge controllers we use in RE systems limit the charge rate based on the batteries voltage. As the voltage increases the charge rate (number of amperes allowed in) is ramped back to prevent overcharging. The initial phase when all available current is allowed into the battery is referred to as the “bulk” charge phase. Once the battery has reached its initial “bulk charge” voltage, (in FLA 12VDC language approximately 14.6VDC) the intelligent charge controller will hold the voltage there for a programmed period of time referred to as the “absorption” charge phase — often 2 hours. This is done to assure full charging throughout the many cells of the battery. After the “absorption” period, the charge controller ramps the allowed current down to achieve the “float” phase, which is a lower voltage (approximately 13.2VDC in FLA 12VDC terms) that greatly reduces the batteries’ gassing while keeping the unit full. Specific “bulk”, “float” and “equalizing” voltages should be supplied with the deep-cycle batteries from their distributors to avoid over or under-charging the particular battery and shortening it’s life. As mentioned earlier, both AGM and Sealed units have lower charge voltage tolerance and the systems charge controller must be programmed appropriately, to avoid damaging the units.

So what is “Equalizing” in battery parlance? An “Equalizing” charge cycle is a controlled over-charging of the battery bank. This removes secondary sulfate ion bonds on the batteries plates, to regain that capacity before tertiary bonds develop and create lost capacity in the unit. First the battery is charged to full by completing a “bulk” and “absorption” charge cycle and then the battery is charged for an extended period of time (6-12 hours) at a controlled rate of the batteries capacity divided by 20 (C/20 rate). By controlling the charge rate, the battery is kept from harm while the secondary level sulfate ions are put back into solution and the batteries full capacity is restored. BEWARE: uncontrolled over-charging can warp the batteries plates, causing it to short out, or (in extreme cases) explode!

Equalizing a battery is essential to maintain battery life and can be hard to achieve with the limited current available from a PV array. Often, a back-up generator (in off-grid applications) or the utility grid and a battery charger is employed to get the desired amp charge rate for the extended periods necessary to fully equalize the battery. During this cycle, no loads can be allowed to discharge the battery or the whole cycle will need to be re-done. Obviously, equalizing a battery is quite challenging.

Battery Size – Buying or Building Containment

The size of the batteries you use determines the size of the containment that you’ll need to buy or build. In addition to the dimensions of the individual batteries, you need to plan extra room for air space around the individual units, so that they can perform as they were designed to and so that they shed heat correctly during heavy charging. I like to keep 1/2” to 1” space between each unit, so I add that to the unit dimensions when I am considering the size of the containment.

Battery Weight

Moving batteries and containing them needs to be done carefully. Proper trucks, skids, palette jacks and fork trucks all become essential as our battery grows in size. Containing the battery requires both size and weight considerations. Building or buying a battery box means getting the battery units into the containment. Large batteries will be easier to handle if the containment can open at floor level to allow for moving units in and out. Containment must be strong enough to hold up to the moving of units and the long term weight of the bank.

Lead prices affect battery costs dramatically. Batteries represent over 70% of the lead market. Some analysts site China’s growing demand for non-ferris metals as the reason for the recent spike in lead costs. Between 2003 and 2006, lead prices increased by more than 250% and in 2007 we saw significant spikes as well. Hedge funds have also been pointed to as sources of unusual spikes in the cost of lead. Lead is produced from roughly 50% new ore and 50% recycled stock. Because lead is a “co-product” of zink, the relatively depressed zink market has helped reduce lead production. Unfortunately, trends indicate that if we need lead-acid batteries we should buy them now! Saving old batteries saves you money – my distributor charges me a “core charge” of $15.00 for GC’s and $20.00 for L 16’s when I’m installing new systems because I can’t give him the old lead. I’m saving batteries!

As with any investment, we want to abide in frugality and meet our true needs.

Grid-tied battery back-up systems can have an incredibly small battery and still meet our needs. If we’re off grid and survive off of our battery we can buy a long lived battery and maintain it well. Batteries have their place and with caution and care we can use them responsibly.

RE has been a reality at SunFarm where I live and work for 20 years because of batteries. I still wish I had the grid. There is nothing like having someone else maintain your battery for you. If I could give my extra electrical production to my neighbors – I would! That is the beauty of the grid. When I am gone teaching, and more than 50% of my load profile is on the road, my charge controllers turn my generators OFF. Grid-tied systems put that unused capacity into my neighbors hands… even if they don’t care about RE. Now that is my kind of battery – the Grid!

*****

Click here to sign up for “Batteries in Solar PV Systems” with Chris LaForge. This course provides in-depth analysis of the issues surrounding the use of batteries for residential PV applications. It covers battery design, specification, use, and maintenance. The course capstone project is creating the design for a battery-based solar PV system.

For a free look at battery free and battery back-up PV systems, check out Chris’ ‘Kroska Case Study’ course… This case study outlines a blend of two PV system designs (battery free and battery back-up) that accommodates two roof planes and types. The design provides for great cost-effectiveness and high aesthetic quality.

Christopher LaForge is the CEO of Great Northern Solar and a NABCEP certified photovoltaic installer-emeritus. He has been designing, specifying, and installing systems since 1988. He has been an instructor with the MREA since 1993 teaching Advanced Photovoltaic design and installation and is an ISPQ Affiliated Master Trainer. For over 29 years, Christopher has been deploying renewable energy systems for both the grid interactive and off-grid markets. A strong advocate for clean energy production, Christopher volunteers with the Midwest Renewable Energy Association, the North American Board of Certified Energy Practitioners (as a member of the Board of Directors until 2015, now as Chair of the BOD Nominations Committee), and the Northern Futures Foundation. Christopher has developed training for contractors, administrators, project managers, and the public. Clients have included: The Gwich’in in Northern Alaska, the City of Minneapolis, Hennepin and St. Louis County in Minnesota, the Madison Area Technical College, and several other colleges. He has trained many electrical contractors in the greater Midwest and beyond. Christopher has a master's degree in Philosophy concentrating in Ethics and Non-Violence from the UW-Madison and is an organic gardener.

More posts by Christopher